
SCHM Final Report: An Implementation of
CELP-based Vocoder

Cupjin Huang
Institute for Interdisciplinary

Information Sciences
Tsinghua University

Beijing, China
Email: pertox4726@gmail.com

Jiawen Liang
Institute for Interdisciplinary

Information Sciences
Tsinghua University

Beijing, China
Email: taobingxue001@126.com

Abstract—In this report we present a linear prediction-
based speech compression mechanism. In particular, we adopt
codebook-excited linear prediction(CELP) method, which signif-
icantly lowered the bit rate as well as maintaining the signal-to-
noise ratio(SNR).

I. INTRODUCTION

Speech coding has been a hot topic during the past few
decades, due to limited bandwidth resource and increasing
need to communicate distantly. In fact, among all kinds of
sounds, speech signals have been intensively studied, and
many effective and efficient models of speech coding are
invented.
Two mainstream categories of speech coders are waveform
coders and vocoders. Waveform coders focus on the
relationship between time domain and frequancy domain,
and they compress signal mainly by throwing away some
information on either domain. Vocoders are more specifized
on sppech signals. Theys are based on the theory of human
sound production, and many of them intend to simulate
human sound by applying the source-filter model of human
voice production. Examples of vocoders include formant
coders and linear predictive coders.
Linear predictive coders (a.k.a. LP coders) are based on the
linear-prediction theory, that is, future values of a discrete
time signal are estimated as a linear function of previous
samples. Due to the quasi-consistency of human sound, linear
prediction can be applied to estimate the values of speech
signal during a short time window, where the signal can be
approximated by a stochastic process.
Linear predictive coders are widely used nowadays. In
fact, LPCs are adopted in two well-known standards of
telephony speech coding, namely FS-1015 and FS-1016. In
particular, FS-1016 is designed upon a variation of LPC,
namely codebook excited linear prediction (CELP), which
significantly increased the sound quality while not increasing
the bit rate too much.
Upon this course, we are required to design a speech codec
based on linear predictive coding. After a few tries, we decided
to simulate the FS-1016 standard, including framewide STP
(short-time prediction including linear predictive coefficient
estimation, linear spectral pair estimation) , subframewide
LTP (long-time prediction including pitch estimation and
innovation signal estimation), and encoding using codebooks.

Below in this section, we introduce some basic ideas in linear
predictive coding, involving the theory of linear prediction,
the source-filter model and the CELP mechanism. In the next
section, we will present things related to our project, including
the intuitions came into our minds, problems encountered,
analysis to the result and possible future extensions. In the
conclusion part, we will give a concise conclusion of our
project.

A. Introduction to Basic LP Theory

A discrete-time signal can be represented by a sequence
of numbers, denoted by s[n], n ∈ Z. Given the signal having
some stochastic characteristics (for example, periodity), we can
estimate the future values of the signal as a linear function of
previous samples, i.e.

ŝ[n] =

K∑
i=1

ais[n− i].

We want our estimation to be the most accurate, so we want
the error (sometimes also called excitation)

e[n] = s[n]− ŝ[n]

to attain minimum in some sense. Here, we use the least square
estimation, that is, we want to minimize∑

i

e[i]2 =
∑
i

(s[i]− ŝ[i])2.

Once the error introduced is minimized, we can recover the
original signal using only the transmitted linear prediction
signals {ai}Ki=1.
For LP vocoders, it is known that voice signals are quasi-
consistent during a short time period, which is usually 20-
30ms. Therefore, it is possible to first divide the signals
into windowed segments, then encode them seperately by
LP coefficients. More specifically, denote the window length
N = t · f , where t denotes the time of the window and
f denotes the sample rate, then what we want to minimize
becomes

N∑
i=1

e[i]2 =

N∑
i=1

s[i]− K∑
j=1

ajs[i− j]

2

.



Fig. 1. Analysis Filter Transforms s[n] to e[n].

Fig. 2. Synthesis Filter Transforms ê[n] to ŝ[n].

Signals outside the range [N ] are regarded as zero.
This is a typical problem in quadratic programming, which
has been studied quite in depth. In fact, there already exists an
algorithm, called Levinson-Durbin algorithm, which can solve
this problem much more efficiently than the usual QP problems
by making use of the Toeplitz matrix appeared in the middle
of the problem. We adopted it in our design of the speech
coding mechanism. This is not the main point of the report,
so I’ll not go into details about state-of-art algorithms.
The linear predictive coefficients, also called LPCs, can be
seen as a filter for signals, i.e. the filter

A(z) = 1−
K∑
i=1

aiz
−i

can transform the original signal s[n] to the excitation signal
e[n], and the inverse filter,

H(z) =
1

1−
∑K
i=1 aiz

−i
=

1

A(z)

can transform the excitation signal ê[n] back to ŝ[n], as shown
above. Therefore, a typical LP coding mechanism may have
the following steps:

• In the encoding phase, we analyze the speech signals
to determine the coefficients of the analysis filter
A(z);

• In the decoding phase, we use these transmitted
coefficients to construct the synthesis filter H(z),
then by inputting excitation signal we can possibly
reconstruct the speech signal ŝ[n].

To reconstruct the voice, we need not only the LPCs to
construct the filter H(z), but also the input impulses ê[n]. It
is of no meaning to directly transmit the original excitations,
as there are as much as information in excitations and in
original signals. By revealing some properties of human
voice production, there is a way to approximate e[n] more
reasonably.

B. Introduction to Source-Filter Model

In source-filter model of human voice production, speech
is regarded as a combination of a sound source, such as the
vocal cords, and a linear acoustic filter, the vocal tract. It is
often assumed that the source and the filter is independent,
and in our case, the synthesis filter H(z) can be regarded as
the filter, while the excitation signal resembles the source.
Moreover, different phonemes can be approximately classified
into two categories: the voiced sound is produced when the
source signal generates almost periodic impulses, and the
unvoiced sound is produced when the source signal is close
to white noise. Therefore, by by examining the periodity of
the excitation signal e[n], one can tell whether the phoneme
is voiced. This information can help to partly reconstruct the
source signal in synthesis phase, i.e. ê[n].

C. Codebook Excited LP Mechanism

However, the sound produced using solely the LPCs and
a number indicating the pitch sounds synthetic and unnatural.
This is because that some sounds cannot be clearly classified as
voiced or unvoiced; there are some voices between voiced and
unvoiced. Apart from this, sudden changes of filters between
two frames may cause feelings of discontinuity. Therefore, the
so-called long-time predictive analysis is introduced to reveal
some periodic relationship between frames. More specifically,
we can view the excitation signal with a periodic component,
i.e.

e[n] = βe[n− T ] + c[n],

where β is called the pitch gain and T is called the pitch delay.
These two numbers reveal long-time stochastic properties
of speech signals such as the pitch of the voice. As for
the remaining innovation signal c[n], we can introduce a
codebook C to deal with it. Using some classification scheme
such as K-means, one is able to find the clustering properties
of innovation signals, thus those occurs more frequently can
be compressed using less bits, while the quality of speech
will not decrease much stochastically.

The intuition of codebook-driven encoding can be applied
further in other part of the coding mechanism. When we
encode the LPCs, it will save much more bits if we try
to transmit a quantized version rather than the original
one, and for quantized version, we can use a codebook
to transmit only the indices on the codebook. The same
idea also goes with the encoding for pitch delays and
pitch gains. Moreover, for innovation signals we also have
a gain factor indicating the amplitude, called codebook
gain, which can also be quantized and codebook-driven. As
all parts of the coding mechanism is codebook-driven, the



overall bit rate can be reduced to 4.8kbps in FS-1016 standard.

II. IMPLEMENTATION AND ANALYSIS

For the implementation, we first tried a prototype
version including solely LP schemes, then we tried to
construct a complete version of CELP mechanisms.
For both implementations, we will first dig inside the
implementation, and then do some analysis on the outcomes.
Both implementations are written in c++.

A. First Try: Barebone LP Coding Mechanism

1) Main Implementation Scheme: In our first
implementation, we applied barebone linear prediction
mechanism. That is, for a 20ms-long window (i.e. N = 160
samples):

• We first applied Levinson-Durbin algorithm
to compute a 10-order analysis filter
A(z) = 1−

∑10
i=1 aiz

−i.

• To encode the speech signal, we simply transmitted
the LPCs ({ai}10i=1 in double) as well as the head
of the original signal, i.e. s[1]− s[10] in short.

• To get excitation, we computed the cross-correlation
coefficient of the excitation signal e[n] = s[n]− ŝ[n],
and chose a local optimum as the speech pitch delay
T . Pitch gain β is then computed using energy of the
exitation signal.

• To reconstruct the signal, we constructed the synthesis
filter H(z) = 1

A(z) using the LPCs and generated
periodic excitation signals using white noise and
pitch synthesis filter 1

1−βz−T , and then put it into
H(z) to reconstruct ŝ[n].

2) Tests Taken: We were very glad to see that the program
works, as after hours of debugging there eventually turns out
to be meaningful sound coming out. We tested it on some
voice corpus provided in the HTK pack available in Xue-
tang Website, including speechrecognition1.wav and
zhongguohaoshengyin.wav. Some of the waveforms are
listed below:

Here, the red line stands for s[n] and the blue one ŝ[n].
We can see from Fig. 3 that the barebone LP mechanism can
by some extent catch the characteristics of the speech signal,
but the prediction performs very poor when the time becomes
longer and longer.
Perceptually, the sound is recognizable but very noisy. The
main cause of noise seems to be the original white noise: the
phonemes are more or less unvoiced after all, indicating that
the pitch synthesizer doesn’t work so well.

Fig. 3. Comparison between original and synthesized speech during a short
window, corpus zhongguohaoshengyin.wav

Fig. 4. Comparison between original and synthesized speech during a
relatively long window, corpus zhongguohaoshengyin.wav

3) Requirements Met: Unfortunately, no requirements are
met except the window length.

• Bit Rate: Bits taken in each 20ms-long frame takes
can be calculated as follows:
◦ a1 ∼ a10 : 10 doubles × 4 bytes per

double= 320 bits;

◦ s[1] ∼ s[10] : 10 shorts × 2 bytes per
short= 160 bits;

◦ T : 1 short= 16 bits;
◦ β : 1 double = 32 bits.

The total bit rate is 26kbps, much more than afforded.
The main reason of this is we didn’t come up
with the idea of quantization. However, even with
quantization, it will still be difficult to insert both
the LPCs and the header of the signal into a limited
sized frame.

• SNR: Signal-to-noise ratio (SNR) is an important cri-
terion of the quality of lossy compression, indicating
the proportion of noise compared with meaningful in-
formation, i.e. the original signal. As it has never been
formally defined how to calculate SNR, we applied the
method Prof. Ching said at the final presentation.
Given two sequences of signals s[n] and ŝ[n], we want
to estimate the excitation without disturbance by phase
differences, as humans ears are not sensitive to phase



differences. To put it more specifically, define

errmin =
αN
min
i=0

N

N − i

N−i∑
j=0

(s[j]− ŝ[i+ j])2.

Here N
N−i is the normalization factor, eliminating the

factor introduced while the two segments overlaps less
and less, and α is a constant to guarantee the lower
bound of overlapped samples. In our testing scheme,
α is set to 0.5. We use errmin as the noise energy and

Esig =

N−1∑
i=0

s[i]2

as the signal energy. SNR can then be calculated once
we have both noise and signal measure. That is,

σ = 10 log10

Esig
Enoise

= 10 log 10
Esig
errmin

.

Taking the average over all frames and we can get
the result.
In our case, the SNR measurement using 160ms-long
window simply gets a result about −0.012dB, i.e.
there are as much noise as the signal information.
Considering that we did subtrtaction first then
squaring, the actual situation may be worse.

To conclude, basic problems arised in our first try include:

• Bit Rate: We spent too many bits to transmit float-
point (or even double) numbers. This is the main
cause of bit rate exceeding. Although I thought of
using a quantized version, but of stability concern I
chose to use the original FP number at last. This was
significantly improved in out later implementation
version.

• Noise: It was not clear whether the pitch gain β is
calculated correctly, but it seemed not to be working
very well. With input impulses nearly white noise, our
synthesized signal sounded harsh and unnatural, and
the SNR requirement wasn’t met.

B. Second Try: FS-1016 Simulation

In our second try, we found an implementation of FS-1016
encoding scheme on the Internet, so we decided to follow that
to establish a codec with a much better quality. This one is far
more mature than the previous one. New extensions include:

• High pass filter is used to eliminate the low frequency
noise in the original speech;

• Transmitting line spectral pairs (LSPs) rather than
LPCs. LSPs are far less sensitive to quantization than
LPCs, therefore quantizing LSPs can be a better idea
than quantizing the original LPCs.

• Perceptual weighting is used to improve the perceptual
quality of synthesized speech.

• Subframe-level reconstruction is used to eliminate
the discontinuities between consecutive frames.
Interpolation of LSPs in subframe level is used to
provide a more smoothly changing synthesis filter.

• More state-of-art method of pitch analysis and pith
synthesis is used. Both pitch delay and pitch gain
is searched using an adaptive codebook, where the
entries are concurrently calculated with a couple
of previous frames. This makes it more accurate to
estimate the pitch, and also makes it possible to deal
with pitches with a long cycle.

• Innovation signal is quantized using an existing
codebook.

This scheme is kind of state-of-art, and the codebooks
provided are relatively fixed. For this reason, our window
length is constrained to be 30ms (i.e. 240 samples in total).
We tried to fully understand the main coding scheme, but
there are still things left nott understood so well, due to the
limited time. Although we have some doubts concerning the
coding scheme, I will explain the fully understood steps and
try my best to figure out the meaning of the steps I cannot
understand so well.
In the presentation, I divided the whole coding scheme into
two main phases: one deals with the entire 30ms-long frame,
while the other analyze each subframe. Here I’d prefer call
them Phase A and Phase B.

1) Phase A: Phase A deals with the entire frame. In Phase
A, the frame signal is first sent to a high pass filter (HPF)
to eliminate the low-frequency noise, then windowed using a
Hamming window to guarantee continuity when calculating
LPCs. Then, LPCs and LSPs of the entrie frame is calculated.
Finally we quantize the LSPs and send them to the next
phase, where LSPs of each subframe is used to reconstruct a
perceptually weighted synthesis filter.

• High Pass Filter: We used a filter of the form

H(z) = Hzero(z)Hpole(z)

where Hzero(z) = 0.946 − 1.892z−1 + 0.946z−2 is
a zero filter and Hpole(z) = 1

1−1.889z−1+0.895z−2 is a
pole filter. I’m not sure how it comes, but it does well
to prevent the undesired low-frequency components.
This pre-processed signal is used as our original
signal, namely s[n].

• Hamming window: Hamming window is a pre-
processing step before calculating the LPCs. As the
length of the window is fixed, the Hamming window
is presented not as a function but as a codebook. Here
we use

s̄[n] = s[n] · ham[n]

to calculate the windowed speech. The hamming win-
dow and a segment of windowed speech is presented
below.



Fig. 5. Performance of the high pass filter H(z) given varying frequancies.
It can be seen that the low-frequency component is surely blocked out.

Fig. 6. Hamming window ham[240] plotted with Matlab.

Fig. 7. Windowed speech segment using the Hamming window, corpus
zhongguohaoshengyin.wav

• LPC calculating: LPC is calculated the same way
we did in the first try, i.e. using Levinson-Durbin’s
algorithm to solve the equation

a = Φ−1Φ0,

where the cross-correlation matrix Φ is Toeplitz.

• LSP calculating: The LP polynomial A(z) = 1 −∑K
i=1 aiz

−i can be decomposed into:

P (z) = A(z) + z−(K+1)A(z−1),

Q(z) = A(z)− z−(K+1)A(z−1).

Now we know that
◦ All the roots of P (z) and Q(z) lie on the unit

circle

◦ The roots of P (z) and Q(z) are interspersed

◦ P (z) corresponeds to the vocal tract with the
glottis closed and Q(z) with the glottis open
(though I don’t know why),

We can just use the roots of P (z) and Q(z) to
represent the LPCs. All the roots of P (z) and Q(z)
lie on the unit cycle, so it would not be possible to
directly solve the roots using bisection. Instead, note
that

P (ω) = 0⇔ P (ω̄) = 0,

We can concentrate on the upper half of the unit cycle,
and use bisection to solve the equations

P (e−iπθ) = 0, θ ∈ [0, 1];Q(e−iπθ) = 0, θ ∈ [0, 1].

The interspersity of the root ensures us to find all the
10 roots. We call them line spectral pairs (LSPs).

• We know that the LSPs reveal some properties of
human vocal tract, therefore it is possible to quantize
them based on statistical results on human vocal tract.
In fact, in quantization step we used a codebook
lspTbl again to find the indices with entries the
closest to the solved LSPs. These indices are the first
part of the frame pack, which takes 10 char× 8 bit
per char = 80 bits.

2) Phase B: After solving the quantized LSPs, we further
explore the short-time characteristics of the frame. Here
we divide the frame into 4 × 7.5ms subframes, each with
60 samples. We will first construct a perceptual weighted
synthesis filter, and then use this filter to search for excitation
signals and pitch delays in a closed-loop manner.
This phase use a kind of search method called Analysis-by-
Synthesis (AbS) search. We use the perceptually weighted
input signal as the reference, and we try to minimize the
perceptually weighted error by choosing the best possible
parameters. Pitch delay T and pitch gain β are calculated
and quantized first, from when we can use the pitch synthesis
filter P (z) = 1

1−βz−T as granted. The excitation signal is then
chosen from a overlapping codebook using the mean square
error criterion. Finally we pack the parameters (pitch delay,
pitch gain, codebook excitation signal, codebook excitation
gain) together for one subframe. After all four subframes are
finished, the pack is sent to the bitstream or stored into a file.

• Interpolate LSPs: To make the filter changing more
smoothly, we construct the subframe synthesis filter
using LSPs which are interpolated from the two
consecutive frames. One thing needs to be pointed
out is that when we do subframe-level analysis, the
subframes we handle are not the four subframes
within the current frame, but the last two of the
previous frame plus the first two of the current frame.
This causes a 15ms delay, which is tolerable provided
that the computation process is efficient.

• Reconstruct LPCs: With these LSPs, we can recon-
struct the trigonometric polynomials

P (e−iπθ), Q(e−iπθ).



Fig. 8. The Closed-Loop LTP included in Analysis-by-Synthesis

From these coefficients in the two trigonometric
polynomials, we can reconstruct the LPCs {ai}10i=1.
These LPCs will be used to construct the perceptually
weighted synthesis filters later on.

• Perceptual weighting: CELP codecs minimizes the
mean square of the noise in the perceptually weighted
domain. This means that a perceptual noise weighting
filter W (z) is applied to the error signal in the encoder.
In our program, W (z) is a pole-zero weighting filter
derived from the LPCs using bandwidth expandion.
More specifically, we have

W (z) =
A(z)

A(z/γ)
, γ = 0.8.

For efficiency concerns, the filtering step is seperated
in the referencial signal and the synthesized signal.

• AbS search for pitch parameters: From here I’m a bit
confused with some mechanisms.
Fig. 8 shows a typical closed-loop mechanism of
AbS. The stochastic codebook is used to generate
innovation signals, and the adaptive codebook, which
consists of previous sample values, is used to generate
periodity in a long-time sense. By calculating the
cross-correlation coefficents, we can find the periodity
of the error signal e[n] = s[n]−s̄lpc[n]. Then by trying
all possible choices of the pitch delay and pitch gain,
we can obtain a long-time predictive (LTP) filter P (z)
for our further search of innovation signal.

• Codebook Search: Now that the LTP pitch synthesis
filter P (z) = 1

1−βz−T , the perceptually weighted STP
synthesis H(z) = 1

A(z/γ) are already determined,
we can now look up the codebook signal to find the
entry which best fits the innovation signal. Similar to
the LTP analysis, this step is done also by identifying
the peak in the cross-correlation of the codebook
entries and the innovation signal. Codebook gain is
then calculated using the ratio between the innovation
signal energy and the codebook entry signal energy.
One thing worth mentioning is the stochastic
codebook adopted by FS-1016 standard. It is an
overlapping codebook, and each entry there is either
0, 1 or -1. More specifically, the stochastic codebook
can be regarded as an array with 1083 entries. If

we peak the entry 1, the innovation signal we will
get is x[0] ∼ x[59], and if we peak the entry 2,
we will get x[4] ∼ x[63] as the innovation signal
(actually this is not the real case, but a choice
of simplicity). Overlapping codebook reduces the
amount of calculation, thus suitable for the case
where vector quantization (VQ) is usually inefficient.

• The encoding scheme ends up with packing. Unlike
FS-1016, we don’t tend to squeeze out bits to achieve a
low bit rate: as our pack storage data consists of purely
indices within 8 bits (except the codebook index,
which takes 9 bits), we can assume that all things
are stored in char. Recall all things get packed:
◦ For the whole frame, we packed 10 chars of

LSP coefficients;

◦ For the 4 subframes, we each packed a pitch
delay index, a pitch gain index, a stochastic
codebook index and a codebook gain index,
which is in total 4×(1+1+2+1) = 20 chars.

◦ We preserved the sync bit in the original
FS-1016 standard, but it is unused.

Therefore, a pack in total takes 10 + 20 + 1 = 31
bytes. Then the bit rate can be calculated as

31× 8 bits
30ms

≈ 10.3kbps.

This bit rate falls in our requirement of 8 ∼ 16kbps.

3) Decoding Scheme: Compared to encoding, decoding is
relatively easier. The decoding scheme only reads all the in-
dices, finds the corresponding entries of LSPs, LTP parameters
and innovation parameters, and then reconstruct a source-filter
system to get back the synthesized signal. More specifically,
for each subframe:

• The LSPs are first read, and then interpolated with
the LSPs in the previous frame. These interpolated
parameters are used to reconstruct the synthesis STP
filter H(z) = 1

1−A(z) ;

• The LTP parameters are then read, and the LTP filter
P (z) = 1

1−βz−T is reconstructed.

• Finally, the stochastic codebook entry and the
codebook gain is read. To look up the stochastic
codebook, one can get the innovation signal entry. Put
it into the filter and we can finally get the synthesized
speech.

4) Tests Taken: We tested the exactly same two corpora as
in the previous analysis. Moreover, to Prof. Ching’s advice,
we tried to test the two additional corpora (recorded by
myself on my laptop):

• An apple a day keeps doctors away.



Fig. 9. Comparison between original and synthesized speech during a short
window (30ms), corpus zhongguohaoshengyin.wav

Fig. 10. Comparison between original and synthesized speech during a
relatively long window (60ms), corpus zhongguohaoshengyin.wav

Fig. 11. Comparison between original and synthesized speech during a
relatively short window (60ms), corpus speechrecognition1.wav. Easy
to see, this phoneme has a high pitch and looks unvoiced, which has a great
chance to be “-ch” in “speech”.

• The quick brown fox jumps over the
lazy dog.

However, the variety of wav wavform format is too difficult
to convert to the specific one we need in our program (8kbps
with 1 sound track), we finally gave up and focused on the
previous two corpora.
The overall quality of the synthesized speech is much better
than the first version of the codec. Some comparisons between
the original signal and synthesized signals are shown in Fig.
9 ∼ 12.

Fig. 12. Comparison between original and synthesized speech during a
relatively short window (60ms), corpus speechrecognition1.wav. The
reconstruction unexpectedly performed very poor here, maybe because of the
aperiodity of the signal.

As is shown, the codec performs well even if the window
length is chosen such that quasi-consistency does not hold
anymore. Also note that the low-frequency noise signal is
blocked out in the synthesized signal (note the difference
between silences at the beginning of Fig.10).
Also, note that in Fig. 12 the reconstruction performs very
poor, especially on the last half. The exact reason of this is
not known yet, but I think there may be some problems in
our reconstruction of the filters.

5) Requirements Met::

• Bit Rate: As we have already calculated, this codec
can achieve a bit rate of 10.3kbps, and the bit rate
constraint is now met. Furthermore, in the FS1016
coding standard, the bit rate is further lowered to
4.8kbps, as every bit allocation in the standard is
carefully written. I used far more bits than actually
needed, as the codebooks usually have 24 ∼ 26

entries, and I just used a char to represent all of
them.

• SNR: Although the sound hears much more nat-
ural than the previous one, the SNR seems
not to be improved much. The SNR of corpus
speechrecognition1.wav is 2.76dB and that
of zhongguohaoshengyin.wav is 2.99dB. Al-
though this sounds no nice, but it is much better than
the SNR of our first try. Two things remain to explain:
◦ I am not sure if the way to calculate SNR

actually make sense. For example, I didn’t
take volume (i.e. the overall energy) into
account, which may cause a big disturbance
to the calculated SNR; also, it seems to me
that a minor difference between the original
pitch and the estimated one may cause big
error even in a short window, while it may not
be sensible to human ears. Clearly defining
“signal” away from “noise” is a difficualt task,
and I think there will be a more reasonable
way to calculate it.



◦ Due to limited time, I cannot be one hundred
percent sure that the CELP mechanism
we implemented is correct in principle.
Many places, such as the codebook index
determining or codebook entry extracting,
may not be coded correctly. To understand
the full scheme and to implement a version
without noticable bug need more time than
provided.

To conclude, we used much more robust mechanisms this
time to avoid harshness and unstability which arised in the
former implementation. These mechanisms worked well, and
there is a considerable improvement in perceptual feeling. Bit
rate requirement has been met, but the SNR is relatively low.
This can be the problem of the calculation of SNR or be the
problem of the mechanism, but it is not known yet.

III. CONCLUSION

In this report, we introduced the basic knowledge and ideas
relating to linear prediction and linear predictive analysis,
source-filter model and codebook excited linear prediction,
which is used widely as standards of speech coding. Then
we presented two of our implementation of CELP speech
codec, where the first one is a barebone LP coding scheme,
and the second one is based on an existing implementation
of FS-1016 standard codec. The second one performs much
better than the first one, but there are still problems need to
be handled.
Altogether, it is an unforgettable experience to really dig deep
inside the speech coding area. Unlike theoretical problems
we meet every day in our study, engineering problems need
more experiences to solve. The theories involved are not as
difficult as expected, but to implement them has been a totally
different problem.
Finally, we are very excited, for our programs are able to
work at last!

ACKNOWLEDGMENT

The authors would like to thank Prof. from CUHK
for having a great time studying and cooperating in the
human-machine speech communication field. We’ve learned a
lot from your teaching.
Especially, we would like to thank Prof. Ching for giving
advice to the problems we encountered during the project.
Also, we would like to thank Gao Weihao from JK00, Feng
Qiwei from JK10 to discuss the LP mechanism. We basically
adopted different coding schemes (even coding languages),
but the ideas shared are of great value.
Finally, I searched a lot on the Internet, here are some of the
links I find very useful:

• http://www.speex.org/docs/manual/speex-
manual/node9.html. Speex is a opensource speech
coding software based on CELP, and in this page
they introduced a lot about the ideas of codebook

excitation linear prediction.

• http://www.speex.org/docs/manual/speex-
manual/node9.html. This is a pdf which contains the
implementation of FS-1016 standard speech coding.
All the codebooks are from this pdf, while we wrote
all functions by our own, given the indicators in this
pdf.

• For histories and applications, we basically searched
them in Wiki.

REFERENCES

[1] T. Ogunfunmi and M. Narashimba, Principles of Speech Coding, CRC
Press, 2010.

http://www.speex.org/docs/manual/speex-manual/node9.html
http://www.speex.org/docs/manual/speex-manual/node9.html
http://www.eie.polyu.edu.hk/~mwmak/others/CelpEncode.pdf
http://www.eie.polyu.edu.hk/~mwmak/others/CelpEncode.pdf
www.wikipedia.org

	Introduction
	Introduction to Basic LP Theory
	Introduction to Source-Filter Model
	Codebook Excited LP Mechanism

	Implementation And Analysis
	First Try: Barebone LP Coding Mechanism
	Main Implementation Scheme
	Tests Taken
	Requirements Met

	Second Try: FS-1016 Simulation
	Phase A
	Phase B
	Decoding Scheme
	Tests Taken
	Requirements Met:


	Conclusion
	References

